organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-(3,4-Dichlorophenyl)-3-(2hydroxyphenyl)prop-2-en-1-one

Jerry P. Jasinski,^a* James A. Golen,^a Prakash S. Nayak,^b B. Narayana^b and H. S. Yathirajan^c

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 28 December 2011; accepted 5 January 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.115; data-to-parameter ratio = 18.1.

In the title compound, $C_{15}H_{10}Cl_2O_2$, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)°. The crystal packing is influenced by $O-H\cdots O$ hydrogen bonds, which form chains along [010]. Weak $\pi-\pi$ stacking interactions [centroid–centroid distance = 3.6697 (13) Å] are observed, which may contribute to the crystal packing stability.

Related literature

For the pharmacological activity of chalcones, see: Bandgar *et al.* (2010); Cheng *et al.* (2008); Dhar (1981); Dimmock *et al.* (1999); Nowakowska (2007). For the synthesis of chalcone derivatives, see: Samshuddin *et al.* (2010; 2011); Fun *et al.* (2010); Jasinski *et al.* (2010); Baktır *et al.* (2011). For related structures, see: Fun *et al.* (2011); Jasinski *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{10}Cl_2O_2\\ M_r = 293.13\\ \text{Triclinic, } P\overline{1}\\ a = 7.2551 \ (6) \ \text{\AA}\\ b = 7.8351 \ (7) \ \text{\AA}\\ c = 12.8049 \ (11) \ \text{\AA}\\ \alpha = 92.367 \ (7)^\circ\\ \beta = 102.946 \ (8)^\circ \end{array}$

$\gamma = 109.011 \ (8)^{\circ}$
$V = 665.51 (10) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.48 \text{ mm}^{-1}$
T = 173 K

$0.34 \times 0.15 \times 0.06 \text{ mm}$

Data collection

```
Oxford Diffraction Xcalibur Eos<br/>Gemini diffractometer5430 measured reflections<br/>3174 independent reflectionsAbsorption correction: multi-scan<br/>(CrysAlis RED; Oxford<br/>Diffraction, 2010)<br/>T_{min} = 0.854, T_{max} = 0.9725430 measured reflections<br/>3174 independent reflections<br/>2417 reflections with I > 2\sigma(I)<br/>R_{int} = 0.018
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$vR(F^2) = 0.115$	independent and constrained
S = 1.01	refinement
3174 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
75 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
restraint	

Table 1 Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots$

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2O\cdotsO1^{i}$	0.84 (2)	1.88 (2)	2.7168 (17)	176 (2)
	1			

Symmetry code: (i) x, y - 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

PSN thanks Mangalore University for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2148).

References

- Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1262–o1263.
- Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). *Bioorg. Med. Chem.* 18, 1364–1370.
- Cheng, J. H., Hung, C. F., Yang, S. C., Wang, J., Wond, S. J. & Lin, C. N. (2008). Bioorg. Med. Chem. 16, 7270–7276.
- Dhar, D. N. (1981). In *The Chemistry of Chalcones and Related Compounds*. New York: John Wiley.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 0582–0583.
- Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, 01313–01314.
- Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, 0756.
- Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, 01948–01949.
- Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Samshuddin, S., Narayana, B., Shetty, D. N. & Raghavendra, R. (2011). Der Pharma Chem., 3, 232–240.
- Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, 0366 [doi:10.1107/S1600536812000505]

(2E)-1-(3,4-Dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

J. P. Jasinski, J. A. Golen, P. S. Nayak, B. Narayana and H. S. Yathirajan

Comment

Chalcones are abundant in edible plants and considered as the precursors of flavonoids and isoflavonoids. They have also been shown to display a diverse array of pharmacological activities (Dhar, 1981; Nowakowska, 2007) including anti-in-fective, anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor, anticancer and mutagenic properties (Dimmock *et al.*, 1999; Cheng *et al.*, 2008; Bandgar *et al.*, 2010). The basic skeleton of chalcones which possess an α,β -unsaturated carbonyl group is a useful synthone for the synthesis of various biodynamic cyclic derivatives such as pyrazoline, isoxazoline, 2,4,6-triaryl pyridine, benzodiazepine and cyclohexenone derivatives (Samshuddin *et al.*, 2010; 2011; Fun *et al.*, 2010; Jasinski *et al.*, 2010; Baktır *et al.*, 2011). The crystal structures of some chalcones, *viz.*, (2E)-3-[3-(benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one (Fun *et al.*, 2011), (2E)-3-(4-chlorophenyl)-1-(4-hydroxyphenyl) prop-2-en-1-one (Jasinski *et al.*, 2011), have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.

In the title compound, $C_{15}H_{10}Cl_2O_2$, the dihedral angle between the mean planes of the two benzene rings is 7.7 (6)° (Fig. 1). O—H…O hydrogen bonds (Table 1) are observed between the hydroxyl hydrogen and propene oxygen atoms forming 1-D polymeric chains along [010]. In addition, weak π - π stacking interactions (Cg1...Cg2 distance of 3.6697 (13) Å; Cg1 and Cg2 are the centroids of the C1–C5 ring and C10–C15 ring, respectively) are observed which may contribute to crystal packing stability.

Experimental

To a mixture of 2-hydroxybenzaldehyde (1.22 g, 0.01 mol) and 3,4-dichloroacetophenone (1.89 g, 0.01 mol) in ethanol (40 ml), 10 ml of 10% sodium hydroxide solution was added and stirred at 278–288 K for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method. The yield of the compound was 86%. (M.P.: 392 K).

Refinement

The H2O atom was located by a difference map and refined isotropically with DFIX = 0.85 (2) Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å. Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH) times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. Packing diagram of the title compound viewed along the *a* axis. Dashed lines indicate O—H…O hydrogen bonding. The remaining hydrogen atoms have been omitted for clarity.

structure-invariant direct

(2E)-1-(3,4-Dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

$C_{15}H_{10}Cl_2O_2$	Z = 2
$M_r = 293.13$	F(000) = 300
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.463 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.2551 (6) Å	Cell parameters from 1666 reflections
b = 7.8351 (7) Å	$\theta = 3.1 - 30.0^{\circ}$
c = 12.8049 (11) Å	$\mu = 0.48 \text{ mm}^{-1}$
$\alpha = 92.367 \ (7)^{\circ}$	T = 173 K
$\beta = 102.946 \ (8)^{\circ}$	Plate, pale yellow
$\gamma = 109.011 \ (8)^{\circ}$	$0.34 \times 0.15 \times 0.06 \text{ mm}$
$V = 665.51 (10) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	3174 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2417 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.018$
Detector resolution: 16.1500 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 3.3^\circ$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2010)	$k = -9 \rightarrow 10$
$T_{\min} = 0.854, \ T_{\max} = 0.972$	$l = -16 \rightarrow 16$
5430 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.115$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.1793P]$ where $P = (F_o^2 + 2F_c^2)/3$
3174 reflections	$(\Delta/\sigma)_{max} < 0.001$
175 parameters	$\Delta \rho_{max} = 0.30 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	nuivalent	isotror	oic dis	placement	parameters	(Å '	i)
1		000.000000000000		00.0000	0. 00		1001.00				(/

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.23632 (10)	1.23387 (8)	0.22164 (5)	0.0692 (2)
Cl2	0.34479 (10)	0.94069 (9)	0.09406 (4)	0.0681 (2)
01	0.2056 (2)	0.98170 (17)	0.58884 (10)	0.0528 (4)
02	0.2367 (2)	0.33480 (17)	0.62755 (10)	0.0467 (3)
H2O	0.232 (3)	0.227 (2)	0.6153 (17)	0.056*
C1	0.2381 (3)	1.0221 (2)	0.38083 (14)	0.0390 (4)
H1A	0.2107	1.1106	0.4190	0.047*
C2	0.2633 (3)	1.0443 (2)	0.27863 (15)	0.0419 (4)
C3	0.3060 (3)	0.9139 (3)	0.22129 (14)	0.0432 (4)
C4	0.3205 (3)	0.7606 (3)	0.26707 (15)	0.0459 (4)
H4A	0.3489	0.6729	0.2288	0.055*
C5	0.2930 (3)	0.7374 (2)	0.36929 (14)	0.0410 (4)
H5A	0.3012	0.6332	0.3992	0.049*
C6	0.2531 (3)	0.8688 (2)	0.42820 (13)	0.0344 (3)
C7	0.2250 (3)	0.8537 (2)	0.53956 (14)	0.0363 (4)
C8	0.2227 (3)	0.6882 (2)	0.58971 (13)	0.0374 (4)
H8A	0.2293	0.5889	0.5503	0.045*
C9	0.2112 (3)	0.6809 (2)	0.69169 (14)	0.0386 (4)
H9A	0.1997	0.7842	0.7240	0.046*
C10	0.2133 (3)	0.5400 (2)	0.76114 (13)	0.0368 (4)
C11	0.2267 (3)	0.3713 (2)	0.73036 (13)	0.0360 (4)
C12	0.2295 (3)	0.2466 (3)	0.80426 (15)	0.0465 (4)
H12A	0.2381	0.1349	0.7833	0.056*
C13	0.2196 (4)	0.2864 (3)	0.90771 (16)	0.0578 (5)
H13A	0.2220	0.2019	0.9565	0.069*

supplementary materials

C14 H14A C15 H15A	0.2061 (4) 0.1996 0.2024 (3) 0.1923	0.4516 (3) 0.4787 0.5748 (3) 0.6853	0.939 1.010 0.867 0.889	85 (16) 0 40 (15) 4	0.0593 (6) 0.071* 0.0506 (5) 0.061*	
Atomic displo	acement parameters	$S(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.1015 (5)	0.0632 (4)	0.0687 (4)	0.0485 (3)	0.0365 (3)	0.0383 (3)
Cl2	0.0983 (5)	0.0790 (4)	0.0432 (3)	0.0402 (4)	0.0328 (3)	0.0210 (3)
01	0.0915 (11)	0.0354 (7)	0.0465 (7)	0.0342 (7)	0.0276 (7)	0.0082 (6)
02	0.0787 (9)	0.0325 (6)	0.0424 (7)	0.0290 (7)	0.0265 (7)	0.0083 (5)
C1	0.0470 (10)	0.0319 (8)	0.0425 (9)	0.0168 (7)	0.0144 (8)	0.0071 (7)
C2	0.0458 (10)	0.0374 (9)	0.0463 (10)	0.0174 (8)	0.0124 (8)	0.0157 (8)
C3	0.0481 (10)	0.0473 (10)	0.0360 (9)	0.0161 (9)	0.0139 (8)	0.0095 (8)
C4	0.0577 (11)	0.0426 (10)	0.0434 (10)	0.0216 (9)	0.0186 (9)	0.0037 (8)
C5	0.0536 (11)	0.0330 (8)	0.0415 (9)	0.0189 (8)	0.0153 (8)	0.0072 (7)
C6	0.0388 (9)	0.0281 (8)	0.0370 (8)	0.0121 (7)	0.0098 (7)	0.0048 (6)
C7	0.0440 (9)	0.0277 (8)	0.0390 (9)	0.0139 (7)	0.0118 (7)	0.0038 (7)
C8	0.0511 (10)	0.0261 (8)	0.0384 (9)	0.0158 (7)	0.0142 (8)	0.0037 (7)
C9	0.0514 (10)	0.0286 (8)	0.0380 (9)	0.0162 (7)	0.0123 (8)	0.0010 (7)
C10	0.0446 (9)	0.0329 (8)	0.0338 (8)	0.0143 (7)	0.0102 (7)	0.0039 (7)
C11	0.0423 (9)	0.0323 (8)	0.0359 (8)	0.0145 (7)	0.0121 (7)	0.0050 (7)
C12	0.0612 (12)	0.0397 (9)	0.0470 (10)	0.0247 (9)	0.0177 (9)	0.0135 (8)
C13	0.0765 (14)	0.0579 (12)	0.0472 (11)	0.0302 (11)	0.0180 (10)	0.0249 (10)
C14	0.0867 (16)	0.0629 (13)	0.0332 (9)	0.0297 (12)	0.0182 (10)	0.0101 (9)
C15	0.0771 (14)	0.0440 (10)	0.0370 (9)	0.0270 (10)	0.0180 (9)	0.0025 (8)

Geometric parameters (Å, °)

Cl1—C2	1.7294 (17)	C7—C8	1.467 (2)
Cl2—C3	1.7241 (18)	C8—C9	1.330 (2)
O1—C7	1.226 (2)	C8—H8A	0.9300
O2—C11	1.358 (2)	C9—C10	1.448 (2)
O2—H2O	0.842 (16)	С9—Н9А	0.9300
C1—C2	1.372 (2)	C10—C15	1.401 (2)
C1—C6	1.392 (2)	C10—C11	1.404 (2)
C1—H1A	0.9300	C11—C12	1.390 (2)
C2—C3	1.388 (3)	C12—C13	1.371 (3)
C3—C4	1.382 (3)	C12—H12A	0.9300
C4—C5	1.378 (2)	C13—C14	1.382 (3)
C4—H4A	0.9300	C13—H13A	0.9300
C5—C6	1.393 (2)	C14—C15	1.369 (3)
С5—Н5А	0.9300	C14—H14A	0.9300
C6—C7	1.489 (2)	C15—H15A	0.9300
С11—О2—Н2О	110.9 (15)	C9—C8—H8A	120.1
C2—C1—C6	120.90 (16)	С7—С8—Н8А	120.1
C2-C1-H1A	119.6	C8—C9—C10	131.19 (15)

C6—C1—H1A	119.6	С8—С9—Н9А		114.4
C1—C2—C3	120.06 (16)	С10—С9—Н9А		114.4
C1—C2—Cl1	119.25 (14)	C15-C10-C11		117.39 (16)
C3—C2—Cl1	120.68 (14)	C15—C10—C9		117.66 (15)
C4—C3—C2	119.71 (16)	C11—C10—C9		124.96 (15)
C4—C3—Cl2	119.09 (14)	O2—C11—C12		121.68 (15)
C2—C3—Cl2	121.19 (14)	O2—C11—C10		118.26 (14)
C5—C4—C3	120.17 (16)	C12—C11—C10		120.06 (15)
С5—С4—Н4А	119.9	C13—C12—C11		120.70 (17)
C3—C4—H4A	119.9	C13—C12—H12A		119.7
C4—C5—C6	120.58 (16)	C11—C12—H12A		119.7
С4—С5—Н5А	119.7	C12—C13—C14		120.29 (18)
С6—С5—Н5А	119.7	C12—C13—H13A		119.9
C1—C6—C5	118.56 (15)	C14—C13—H13A		119.9
C1—C6—C7	118.09 (14)	C15—C14—C13		119.36 (18)
C5—C6—C7	123.35 (14)	C15—C14—H14A		120.3
O1—C7—C8	120.65 (15)	C13—C14—H14A		120.3
O1—C7—C6	119.13 (14)	C14—C15—C10		122.21 (18)
C8—C7—C6	120.22 (14)	C14—C15—H15A		118.9
C9—C8—C7	119.71 (15)	C10-C15-H15A		118.9
C6—C1—C2—C3	-0.6 (3)	O1—C7—C8—C9		-3.9 (3)
C6—C1—C2—Cl1	178.20 (14)	С6—С7—С8—С9		175.47 (17)
C1—C2—C3—C4	0.8 (3)	C7—C8—C9—C10		-177.56 (18)
Cl1—C2—C3—C4	-177.92 (15)	C8—C9—C10—C15		178.7 (2)
C1—C2—C3—Cl2	-178.34 (14)	C8—C9—C10—C11		-0.9 (3)
Cl1—C2—C3—Cl2	2.9 (2)	C15—C10—C11—O2		179.76 (17)
C2—C3—C4—C5	-0.1 (3)	C9—C10—C11—O2		-0.6 (3)
Cl2—C3—C4—C5	179.07 (15)	C15—C10—C11—C12		-0.2 (3)
C3—C4—C5—C6	-0.9 (3)	C9—C10—C11—C12		179.39 (18)
C2—C1—C6—C5	-0.4 (3)	O2-C11-C12-C13		179.89 (18)
C2—C1—C6—C7	179.74 (17)	C10-C11-C12-C13		-0.1 (3)
C4—C5—C6—C1	1.1 (3)	C11—C12—C13—C14		0.2 (3)
C4—C5—C6—C7	-179.04 (17)	C12—C13—C14—C15		0.1 (4)
C1—C6—C7—O1	-5.7 (3)	C13—C14—C15—C10		-0.5 (4)
C5—C6—C7—O1	174.48 (18)	C11—C10—C15—C14		0.5 (3)
C1—C6—C7—C8	174.96 (16)	C9-C10-C15-C14		-179.1 (2)
C5—C6—C7—C8	-4.9 (3)			
Hydrogen-bond geometry (Å, °)				
D—H····A	D—H	H···A	$D \cdots A$	D—H····A

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
02—H2O…O1 ⁱ	0.84 (2)	1.88 (2)	2.7168 (17)	176 (2)

Symmetry codes: (i) x, y-1, z.

Fig. 1

